产品中心
PRODUCTS CNTERabbelight 3D单分子荧光成像系统-SAFe 360是款基于单分子定位的显微成像(SMLM)的3D单分子成像系统,它*的DAISY技术整合了散光技术和超临界角光技术,能够很大的提高定位精度,xyz可同时高达15nm的定位精度
相关文章
RELATED ARTICLES3D单分子荧光成像系统-SAFe 360简介:
SAFe 360是法国abbelight公司推出的款基于单分子定位的显微成像(SMLM)的新型3D单分子成像系统,它*的DAISY技术整合了散光技术和超临界角光技术,能够很大的提高定位精度,xyz三轴定位精度高达15nm,可以提供高清晰三维亚细胞结构图像,支持同时多四色成像,可以用于细胞纳米三维成像,观测高清晰亚细胞器结构,实时研究不同的结构功能蛋白的共定位信息,在单分子水平研究分子动力学反应以及细胞间的相互作用等。
加装 | TIRF smFRET ...... | 兼容 | Confocal STED ...... |
3D单分子荧光成像系统-SAFe 360设备参数
+ 成像模式:PALM、STORM、PAINT、smFRET 、SPT
+ 光源模式:Epi、TIRF、HILO
+ 分辨率:15 nm的XYZ轴分辨率
+ 超大视野:200 × 200 μm2的视野
+ 次可同时采集1.2 μm深度图像信息
+ 图像深度:10 μm
+ 实时漂移矫正
+ 四色同时成像
+ 活细胞成像模式
配套试剂
Smart kit • 10 doses per box • 200 µL per dose • 30 sec prepartion • 2 months in a fridge • 2 weeks on sample | Compatible dyes • Atto 488, WGA-AF®488 • AF®532, CF®532, Cy3b • AF®555, AF®594, CF®555, AF®568, CF®568, Cy5, MemBriteTM 568, TMR • AF®647, CF®647, AF®680, CF®680, MemBriteTM 640, Actin-stain 670, SiR647 |
测试数据
3D线粒体结构 | 核孔复合物 |
老鼠海马神经元 | 微管蛋白网络 |
发表文章
[1] Radhakrishnan, A. V., et al. "Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration." The Integrin Interactome. Humana, New York, NY, (2021). 85-113.
[2] Jouchet, Pierre, et al. "Nanometric axial localization of single fluorescent molecules with modulated excitation." Nature Photonics (2021): 1-8.
[3] Pernier, Julien, et al. "Myosin 1b flattens and prunes branched actin filaments." Journal of cell science 133.18 (2020).
[4] Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: optimized single molecule localization microscopy." Methods 174 (2020): 100-114.
[5] Mau, Adrien, et al. "Fast scanned widefield scheme provides tunable and uniform illumination for optimized SMLM on large fields of view." bioRxiv (2020).
[6] Orre, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." bioRxiv (2020).
[7] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.
[8] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.
[9] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).
[10] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.
[11] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082.
[12] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.
[13] Culley, Siân, et al. "Quantitative mapping and minimization of super-resolution optical imaging artifacts." Nature methods 15.4 (2018): 263.
[14] Berger, Stephen L., et al. "Localized myosin II activity regulates assembly and plasticity of the axon initial segment." Neuron 97.3 (2018): 555-570.
[15] Cabriel, Clément, et al. "Aberration-accounting calibration for 3D single-molecule localization microscopy." Optics letters 43.2 (2018): 174-177.
[16] Bouissou, Anaïs, et al. "Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring." ACS nano 11.4 (2017): 4028-4040.
[17] Sellés, Julien, et al. "Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy." Scientific reports 7.1 (2017): 14732.
[18] Bourg, Nicolas, et al. "Direct optical nanoscopy with axially localized detection." Nature Photonics 9.9 (2015): 587.
用户单位