先进电子设备和无线通信技术的快速发展给人们的生活带来了极大的便利,但也产生了不可忽视的电磁辐射污染。这种污染会对周围电子元件的正常工作造成严重干扰,降低信息安全和通信质量,危害人体健康。开发先进的电磁波(EMW)吸波材料是解决这一问题的有效途径之一。碳基材料由于其密度低、官能团丰富、电性能可调等特点,在电磁波吸收方面具有良好的前景。膨胀石墨(EG)作为三维(3D)碳骨架材料,不仅具有高导热/导电性、易于批量生产等优点,而且其特殊的蜂窝状结构有利于电磁波的多次反射和增强吸收。然而,由于单组分EG的阻抗匹配较差,很难获得强的EMW衰减,因此,如何平衡具有高电磁波吸收性能的碳材料的阻抗匹配特性是该领域研究的重点。
针对上述问题,昆明理工大学研究人员提出了一种通过晶体/非晶异质界面和阳离子缺陷来调节碳基吸收材料的阻抗匹配的策略。采用微波溶剂热法在3D碳基体(EG)上原位生长CuCo2S4,成功制备了3D花蜂窝状CuCo2S4@EG异质结构(CEG)。这种特殊的3D异质结构可以提供丰富的异质界面和缺陷,可以有效调节碳基材料的阻抗匹配,实现电磁波的多重衰减。该材料在1.4 mm处实现了Ku波段的有效吸收,最丶低反射损耗值(RLmin)为-72.28 dB,有效吸收带宽为4.14 GHz,而填料负载量仅为7.0 wt.%。
图1. (a) Cu 箔、CEG-6 和 CuO 的 Cu-K边归一化XANES 光谱。(b)Cu 箔、CEG-6 和 CuO 的 Cu-K边的 FT-EXAFS 光谱。(c)k 空间中Cu CEG-6 的 EXAFS 拟合曲线。(d)R空间中Cu CEG-6的EXAFS拟合曲线。(e)Cu-K边的小波变换图。
作者利用台式X射线吸收精细结构谱仪easyXAFS300分析了CEG材料中 Cu (图1)和 Co (图2)原子的配位环境。 如X射线吸收近边光谱(XANES)(图1a和图2a)所示,拟合结果表明CEG中Cu和Co的价态分别为+2和+3,与XPS的结果一致。 CEG的k3加权扩展X射线吸收精细结构(EXAFS)光谱的傅里叶变换(FT)显示在约1.8 Å处有一个主峰(图1b和图2b),该主峰被指认为Cu- S 和 Co-S 键。CEG材料在k和R空间中的拟合结果分别如图1c、d和图2c、d所示。拟合表明CEG中Cu-S和Co-S的配位数约为3.2和2.9,Cu-S和Co-S的平均键长分别为2.28Å和2.26Å。随后,作者进行了小波变换 (WT)-EXAFS 分析。 CEG材料中未检测到 Cu-Cu、Cu-O 和 Co-Co 键的 WT 信号(图1e 和图2e)。 Cu和Co的WT等值线图中只有一个最大强度,约为5.5 Å和8.0 Å,分别对应于Cu-S和Co-S的配位。上述分析表明,CEG材料中每个Cu和Co原子与约3个S原子配位,低于CuCo2S4(Fd-3m)标准结构。XAFS结合其他表征手段分析表明 CEG 中存在 Cu 和 Co 阳离子缺陷,而此类金属阳离子缺陷的存在一般来说会破坏电荷平衡并影响材料内的电子传输。
图2. (a) Co 箔、CEG-6 和 Co3O4 的 Co-K边归一化XANES 光谱。(b)Co 箔、CEG-6 和 Co3O4 的 FT-EXAFS 光谱。(c)k 空间中Co CEG-6 的 EXAFS 拟合曲线。(d)R空间中Co CEG-6的EXAFS拟合曲线。(e)Co-K边的小波变换图。
这项工作阐明了CuCo2S4@EG EMW吸收剂的内部组成、结构和功能之间的关系,并为高性能3D碳基吸收材料的开发和设计提供了简单有效的策略,以“Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption"为题发表于国际期刊Nature Communications. 本文所使用的台式X射线吸收谱仪系统easyXAFS300是由美国easyXAFS公司研发的,如图3所示。该装置得益于特殊的单色器设计,无需同步辐射光源,可以在常规实验室环境中实现X射线吸精细结构谱XAFS测试,获得媲美同步辐射光源的优质谱图,用于分析材料的元素价态、化学键、配位结构等全面信息。该台式设备帮助广大科研人员摆脱对同步辐射X射线光源的依赖,极大地提高了XAFS表征技术在能源、催化、环境等各领域的大范围应用。该设备已帮助国内外用户取得大量优秀的科研成果,发表于J. Am. Chem. Soc., Adv. Funct. Mater., Nat. Commun.等期刊。
图3. 美国台式X射线吸收谱仪系统easyXAFS300
参考文献:
[1]. Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. (Nat. Commun. 2023, DOI: 10.1038/s41467-023-41697-6)
https://doi.org/10.1038/s41467-023-41697-6