技术文章
TECHNICAL ARTICLES激光浮区技术(LFZ),在过去的几十年里,作为种简单、快速、无需坩埚的生长高质量单晶材料的方法,在高熔点材料的单晶生长域取得·越进展。
LFZ与常规光学浮区技术OFZ大的区别是用于加热和熔化的光辐照源不同。OFZ通常是使用椭球镜将卤素灯或者氙灯光源聚焦到生长棒来实现晶体生长。LFZ则是采用激光作为加热光源进行晶体生长,由于激光光束具有能量密度高的点,因此可实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。
随着技术的不断迭代,2020年Quantum Design Japan公司和日本理化研究所Yoshio Kaneko教授密切合作,联合设计开发了新代高性能激光浮区法单晶炉LFZ,该系统采用了5束激光光路的设计方案,保证了激光辐照强度均匀分布在原材料的环向外围,并提供高功率分别为1.5 kW和2 kW两种规格的系统。此外,在新代高性能激光浮区炉LFZ的光路设计中,采用了Yoshio Kaneko教授的温度梯度化设计,能有助于改善晶体生长过程中的剩余热应变弛豫;除此之外,该系统还采用了Yoshio Kaneko教授的温度反馈控制闭环设计方案,实现了温度的实时监控与自动调节。
实例讲解:
1. 磁性材料Bi2CuO4
传统的磁性记忆合金依赖于双磁态,如铁磁体的自旋向上、自旋向下两种状态。增加磁态数量,且采用无杂散场的反铁磁材料,有望实现更高容量存储。近篇发表于Nature Communications期刊题为Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism的工作表明磁电共线反铁磁Bi2CuO4中不仅具有四个稳定的Néel矢量方向,还存在引人注目的反铁磁三色现象,即在可见光范围内的磁电效应使得吸收系数随光传播矢量和Néel矢量之间的角度变化而取三个离散值。用这种反铁磁三色性,该工作可实现可视化的场驱动Néel矢量的旋转甚至反转[1],为电场调控和光学读取的高密度存储器设计提供可能性。
在该篇工作中看,磁性材料Bi2CuO4的制备使用了Quantum Design LFZ1A 激光浮区法单晶炉。该材料表面张力较低,熔融区难以控制,早期研究多采用较快的生长速度,但生长速度过快往往会导致微裂隙的存在而影响样品品质。在此,用LFZ1A,通过精细调节生长条件,实现了高质量单晶的生长,从而实现了更精细的磁电性质测量。
在晶体生长的初几个小时,为稳定熔融区域,激光电流手动调节在26.9 - 27.4 A范围,随后,便可以切换到自动恒温模式下,生长速度控制在2.0 mmh-1,进料棒和籽晶棒反向旋转10 rpm,实现晶体的超过24 h的稳定生长,而不需要其他的手动操作。晶体生长在流动的纯氧气氛中进行。
图1. Bi2CuO4的磁性测量。SQUID面内面外磁化率的测量都表明材料是TN=44K发生了反铁磁转变。单晶棒非常容易从Z平面解理开,插图显示解理面非常光亮,表明了样品的质量很高[1]。
2. 烧绿石Nd2Mo2O7
烧绿石Nd2Mo2O7中,Mo子晶格呈现出自旋倾斜、近乎共线铁磁排布,其标量自旋手性诱导出巨大的拓扑霍尔效应,可应用于霍尔效应传感器。Nd2Mo2O7是种高挥发性材料,单晶合成需要被加热到1630℃,MoO2等成分高度挥发,并在生长石英管内壁沉积,导致光源辐照受阻,进而导致熔融区域温度降低,生长不稳定。得益于LFZ设备高精度和快速响应的温度控制系统,在熔融区域失稳前,迅速增加激光功率,激光光通量密度比卤素灯高几个量,因而可以迅速将温度提升到1100℃,促进沉积到石英管内壁上的MoO2的再挥发,当沉积与再挥发达到平衡时,激光加热功率稳定下来,终实现晶体的稳定生长。
近发表在Physical Review B期刊题为Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7的工作中,Max Hirschberger等人通过Ca2+取代Nd3+来调控化学势,实现了对Mo子晶格倾斜自旋铁磁稳定性的调控[2]。
他们用Quantum Design LFZ制备了系列不同组分的厘米尺寸单晶(Nd1−xCax)2Mo2O7(x=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.22, 0.30和0.40)。在氩气氛下,生长温度控制在1630-1700℃,生长速度为1.8-2 mm/h。对不同组分单晶的磁性研究证明了在x≤0.15时倾斜铁磁态以及自旋倾角具有稳定性。而在x=0.22以上,Mo-Mo和Mo-Nd磁耦合变号,自旋玻璃金属态取代倾斜的铁磁态。
图2, (Nd1−xCax)2Mo2O7不同组分磁化曲线和相图。左图:x=0.01, 0.22和0.40的三个组分单晶的场冷曲线,可以清晰的判断出倾斜铁磁态和自旋玻璃态的转变温度。右图:不同组分获得的转变温度总结的相图,包括有倾斜铁磁态、自旋玻璃态和顺磁态[2]。高品质数据的采集得益于高质量的单晶样品和精准的成分控制。
3. 高熔点材料SmB6
SmB6是早发现的重费米子材料之,其研究已经有五十多年的历史。随着拓扑域的发展,近几年人们发现SmB6是种拓扑近藤缘体。它的电缘性来自于强关联的电子相互作用,不仅如此,它的缘态存在能带反转,具有拓扑非平庸属性,表面会出现无能隙拓扑表面态。由于体态*缘,这个表面态可以用来做新型二维电子器件[3]。
对SmB6拓扑和低温性质的准确探索,离不开高质量的材料,但因为该材料的高熔点(2350℃),很难通过常规手段获得。而Yoshio Kaneko等人应用Quantum Design LFZ实现了高品质SmB6的生长。生长条件:1标准大气压的氩气氛,气体流速2000 cc/m,生长速率20 mm/h。
图3. SmB6单晶形貌图和劳厄衍射图。SmB6单晶表面如镜面般光亮,晶体(111)面的劳厄斑体现了很好的三重对称性,佐证了样品的高品质,适用于拓扑性质的精细测量[4]。
总结
综上,Quantum Design新代高性能激光浮区法单晶炉(LFZ)与传统浮区法单晶生长系统相比,*的激光光路可实现更高功率、更加均匀的能量分布和更加稳定的性能。LFZ将浮区法晶体生长技术推向个全新的高度,可广泛应用于制备红宝石、SmB6等高熔点材料,Ba2Co2Fe12O22等不致熔融材料,以及Nd2Mo2O7、SrRuO3等高挥发性材料,为凝聚态物理、化学、半导体、光学等多种学科域提供了丰富的高品质单晶储备,使得更精细的单晶性质测量和表征成为可能。
图4. 新代高性能激光浮区法单晶炉LFZ外观图(左)和原型机中被五束激光加热的原料棒(右)。
参考文献:
[1]. K. Kimura, Y. Otake, T. Kimura, Visualizing rotation and reversal of the Neel vector through antiferromagnetic trichroism. Nat Commun 13, 697 (2022).
[2]. M. Hirschberger et al., Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7. Physical Review B 104, (2021).
[3]. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 121, 2780-2815 (2021).
[4]. Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power laser of 1 kW composed of five smart beams. Journal of Crystal Growth 533, 125435 (2020).
相关产品
1、新代高性能激光浮区法单晶炉-LFZ
https://www.chem17.com/product/detail/32086238.html